Data Science Explainer

The power of definitions

It doesn’t matter what technology you teach, when you’re teaching Data Science. I don’t care whether you use Python, R, spreadsheets, or stacking blocks to make graphs and analyse your data. What matters, above all else, is that you teach your students to ask critical questions about the data. How was it collected? What are the definitions you used? How do we know the definitions are valid? What other definitions could we use, and how would that change the data?