Why does Education need fixing?

This is an excerpt from Raising Heretics: Teaching Kids to Change the World, available from Booktopia, Amazon, Apple Books, and more.

There are so many signs that our current education system is missing the mark. When my teenager gets frustrated because she doesn’t understand how what she’s learning in maths could ever be useful. When a primary school kid says science is boring. When a high school kid says maths is too hard, or science isn’t for them, or they aren’t smart enough to program a computer. None of these things would happen if education was working. It’s obvious that it’s not.

And that’s unsurprising, since the primary focus of education is a matter of facts, rote learning, and mindless application of procedures. By giving kids “experiments” to do that have known inputs and known results, we teach science as confirmation bias. This trains them that the important thing is to get the right, expected answer (and if you get a different answer, fudge things until it’s right!), rather than exploring the unknown and looking for new things.

Although the importance of STEM is widely acknowledged, it is frequently taught as a matter of tech toys, rather than a crucial tool for solving real problems. This commonly comprises a day of robotics play, or the installation of a maker space where kids can tinker with 3D printers and laser cutters. These toys are frequently error prone and difficult to use, so when kids don’t find them fun, or have trouble using them, they assume that STEM is something they can’t do.

Even when problem solving tools like Design Thinking are introduced in the classroom, they are often only used to solve toy problems that don’t relate to challenges that kids can tackle in real life. Design Thinking plays with trips to Mars, or responding to a famine in Ethiopia, instead of taking one of the many problems in our own schools and communities and empowering kids to solve it. You can’t teach problem solving properly if you skip the really tough part; implementing your solution and then troubleshooting all the ways it doesn’t work the way you thought it would.

By doing this, we tell kids that they can’t make a difference until they are grown up, when we could be giving them the tools to make a positive difference in their world today.

The truth is, with this kind of education we have got really good at turning out obedient kids who follow the rules and do as they are told. And those are not the kind of people we need to overcome the huge crises we’re facing. We need people who are confident, skilled, knowledgeable, and prepared to stand their ground and argue a point. We need people who see things differently, who look for new answers, who understand uncertainty, and who ask hard questions. We need people who are “unbossable”, who don’t do what they’re told without first understanding why it’s the right thing to do. We need people who challenge the status quo. We need people who consider ethics first, rather than as an afterthought or not at all.

Meanwhile, Science has somehow become a partisan political football. Australia’s response to the Covid19 crisis was effective, largely because the Government followed the advice of experts in epidemiology. Unfortunately, we face a larger and more serious existential crisis in the form of climate change, and in this case, the Government is ignoring experts and investing deeply in denialism and cheap grabs for immediate power and profit.

Policy in this country (and most of the world) is largely driven by ideology, powerful lobby groups, and manipulative media organisations, rather than by science and evidence. This kind of destructive behaviour is justified with dodgy data and deeply suspect visualisations, and all too often even the media lack either the scepticism or the skill to call them out.

Inequality is rising under the influence of capitalism-driven globalisation that promises better lives for all via the concept of “trickle down economics”, which the data shows quite clearly does not work. We resist Universal Basic Income on the basis that people would stop working out of laziness, when the data from the trials so far shows not only that people don’t stop working, but also that they become more entrepreneurial. Our governments sell off natural assets, log native forests, privatise essential services like health and education, and give tax cuts to big business despite evidence showing that the best way to stimulate the economy is to give money to poor people. As a population, we swallow the line that it is all for our own benefit, and vote the same people back in.

Social media also drags us by the nose, constructing ever more cunning ways to tie us to their platforms, milk us for data and profit, and manipulate our behaviour, all without our informed consent. Our social and workplace gains are casually undermined by disruptive technologies, while we have no input into, and even less control over, the way they shape our future.

This is why we need a rationally sceptical population. We need to stop being irrationally sceptical of climate science and vaccines and start being rationally sceptical of government policy, business motives, and media beatups.

For more, check out Raising Heretics, available as a paperback or ebook from online bookstores now.

Raising Heretics to Save the World

This is an excerpt from Raising Heretics, available now online in ebook and paperback format (check out adsei.org for international links & ebooks).

It’s time to change the world. We need creative problem solvers to address catastrophic climate change, income inequality, pandemics, ecological collapse, misinformation, radicalisation, and many more problems facing humanity. We need critical thinkers. Rational Sceptics. People willing to challenge the status quo.

Unfortunately, we have an education system that’s exceptionally good at turning out obedient people full of “facts” and unshakeable opinions. This book proposes a new approach to education that empowers our children to solve real problems, to challenge their own results, and to shake up the status quo on the basis of evidence and data.

I founded the Australian Data Science Education Institute in 2018 because I wanted to show kids that they are capable of working with technology, that it is relevant to them, and that they don’t have to look like Sheldon from the Big Bang Theory in order to learn to program.

It’s well known that the technology industry has a diversity problem when it comes to women, but lack of diversity goes way beyond gender. By trying to increase the number of women and girls in STEM, we are only tackling the easy part – though it’s actually not that easy, judging by the sheer volume of women in STEM programmes and the persistently stubborn failure of the numbers to actually shift.

The problem is that we consistently attract the kinds of people to tech that are already there. We are missing big chunks of the population – boys included. Boys who don’t see themselves as nerdy, or who don’t see the point of tech. Girls who don’t see it as relevant to them. Non binary and gender queer kids who don’t see themselves as represented or welcome in any of the tech programmes available to them.

If we had true diversity in technology and Data Science, we’d have a range of ethnic and cultural backgrounds, as well as people with a wide range of physical abilities. We’d have people on our design teams that are mobility compromised, vision impaired, with allergies, with varied gender identities and sexualities, with every possible skin tone and body shape. We’d have people who act differently, dress differently, think differently, and have different needs. I have headphones that don’t work well with long hair, for goodness’ sake! Guess who was on that design team?

This lack of diversity is bad for the technology industry, but it’s even worse for the rest of us, because technology is changing the shape of our world at an alarming rate, and we currently have very little say in our own future. Companies like Uber and Doordash are radically changing our working conditions and eliminating hard won entitlements and protections, while Facebook and Youtube spread misinformation and encourage radicalisation, all in the name of keeping people on their platforms and maximising their profits. Our world is being directly shaped by technology companies that are working in ways we don’t understand and have no control over.

Meanwhile we see human resources companies using AI to filter job applicants, claiming that their system eliminates “human bias”, without admitting the possibility that it introduces new forms of machine bias. We see “predictive policing” algorithms being used to predict crime and target particular communities in disturbing ways. We see a rush towards machine learning and artificial intelligence systems for their own sake, rather than for problems they can legitimately solve, and we have a wholly unwarranted confidence in the accuracy, reliability, and objectivity of their output.

It turns out that diversity in the technology industry is only a small part of the reason why teaching all kids Data Science and STEM skills matters. The big part is that we need a technology and data literate population who are trained to think critically and creatively, and, in particular, trained to believe that they can solve problems. That’s the world we need to build. And the foundation stone of world building has to be education.

We have a choice. We can train kids to be obedient process followers who don’t rock the boat, or we can train them to be challenging, critical and creative thinkers who ask difficult questions and come up with innovative solutions to our worst problems.

Above all, we need people who are prepared to be heretical.

Who ask “why?

Who ask “how can we be sure?”

Who ask “what have we missed?”

Who ask “how can we do better?”

Who ask “who are we hurting?”

Who ask “how can we fix this for everyone?”

Who ask “how will we know how well it works?”

These questions are often heretical. By asking them, I’ve sometimes made my bosses very unhappy. They make people uncomfortable. But they are crucial to building an ethical, sustainable, positive future for all of us.

I have a PhD in Computer Science Education and over twenty years experience teaching Computational and Data Science at both Secondary and Tertiary levels. Now I’m the Founder and Executive Director of the Australian Data Science Education Institute (ADSEI) – a registered charity dedicated to ensuring every student is empowered with data literacy, Data Science, and STEM skills. I started ADSEI because I figured out how to engage kids with STEM and Data Science skills, and I wanted to engage all kids, not just the kids in my own classes. I thought this would help improve diversity in the technology industry, but I have come to realise the problem is far more fundamental than that.

All of my time in education has made it clear to me just how badly wrong education has gone. We continue to make the same educational mistakes we’ve been making for decades. We are failing our children, and, in doing so, we are sabotaging our future. If we want to build a future that is evidence based, rational, and inclusive, then our education system clearly needs to change.

There are so many signs that our current education system is missing the mark. When my teenager gets frustrated because she doesn’t understand how what she’s learning in maths could ever be useful. When a primary school kid says science is boring. When a high school kid says maths is too hard, or science isn’t for them, or they aren’t smart enough to program a computer. None of these things would happen if education was working. It’s obvious that it’s not.

And that’s unsurprising, since the primary focus of education is a matter of facts, rote learning, and mindless application of procedures. By giving kids “experiments” to do that have known inputs and known results, we teach science as confirmation bias. This trains them that the important thing is to get the right, expected answer (and if you get a different answer, fudge things until it’s right!), rather than exploring the unknown and looking for new things.

Although the importance of STEM is widely acknowledged, it is frequently taught as a matter of tech toys, rather than a crucial tool for solving real problems. This commonly comprises a day of robotics play, or the installation of a maker space where kids can tinker with 3D printers and laser cutters. These toys are frequently error prone and difficult to use, so when kids don’t find them fun, or have trouble using them, they assume that STEM is something they can’t do.

Even when problem solving tools like Design Thinking are introduced in the classroom, they are often only used to solve toy problems that don’t relate to challenges that kids can tackle in real life. Design Thinking plays with trips to Mars, or responding to a famine in Ethiopia, instead of taking one of the many problems in our own schools and communities and empowering kids to solve it. You can’t teach problem solving properly if you skip the really tough part; implementing your solution and then troubleshooting all the ways it doesn’t work the way you thought it would.

By doing this, we tell kids that they can’t make a difference until they are grown up, when we could be giving them the tools to make a positive difference in their world today.
The truth is, with this kind of education we have got really good at turning out obedient kids who follow the rules and do as they are told. And those are not the kind of people we need to overcome the huge crises we’re facing. We need people who are confident, skilled, knowledgeable, and prepared to stand their ground and argue a point. We need people who see things differently, who look for new answers, who understand uncertainty, and who ask hard questions. We need people who are “unbossable”,who don’t do what they’re told without first understanding why it’s the right thing to do. We need people who challenge the status quo. We need people who consider ethics first, rather than as an afterthought or not at all.

Meanwhile, Science has somehow become a partisan political football. Australia’s response to the Covid19 crisis was effective, largely because the Government followed the advice of experts in epidemiology. Unfortunately, we face a larger and more serious existential crisis in the form of climate change, and in this case, the Government is ignoring experts and investing deeply in denialism and cheap grabs for immediate power and profit.

Policy in this country (and most of the world) is largely driven by ideology, powerful lobby groups, and manipulative media organisations, rather than by science and evidence. This kind of destructive behaviour is justified with dodgy data and deeply suspect visualisations, and all too often even the media lack either the scepticism or the skill to call them out.

Inequality is rising under the influence of capitalism-driven globalisation that promises better lives for all via the concept of “trickle down economics”, which the data shows quite clearly does not work. We resist Universal Basic Income on the basis that people would stop working out of laziness, when the data from the trials so far shows not only that people don’t stop working, but also that they become more entrepreneurial. Our governments sell off natural assets, log native forests, privatise essential services like health and education, and give tax cuts to big business despite evidence showing that the best way to stimulate the economy is to give money to poor people. As a population, we swallow the line that it is all for our own benefit, and vote the same people back in.

Social media also drags us by the nose, constructing ever more cunning ways to tie us to their platforms, milk us for data and profit, and manipulate our behaviour, all without our informed consent. Our social and workplace gains are casually undermined by disruptive technologies, while we have no input into, and even less control over, the way they shape our future.

This is why we need a rationally sceptical population. We need to stop being irrationally sceptical of climate science and vaccines and start being rationally sceptical of government policy, business motives, and media beatups.

We need to build a new world. And world building has to start with education.

Understanding the data will help us understand the danger

In Australia right now, both Sydney and Melbourne are battling outbreaks of the delta variant of covid, and wondering why it just doesn’t seem to lie down and die the way the virus did in Australia last year. There are many reasons for our current problems – too, too many of them political – but a lot of it comes down to the R0 value, or how contagious this variant is.

Last year’s variant was not nearly as contagious – some estimates say delta is three times as contagious as that one – and so it was easier to put down. But what is R0, and why do we care?

R0 is known as the “basic reproduction number”, and simply represents how many people an infected person will infect. So an R0 of 2 means that each person with covid spreads it to 2 other people. That means the infection doubles at every step, and that’s bad. 1 person infects 2 others, they spread it to 4, who spread it to 8, etc. At the 6th step, we’re already at 64 new people being infected. Left unchecked, at the 10th step we’re at 1024 new people infected.

2
4
8
16
32
64
128
256
512
1024

Delta has an estimated R0 of 5. Every person with delta will likely spread it to 5 other people. That means 1 case becomes 5, those 5 infect 25 more, those 25 infect 125 more, and it escalates alarmingly fast. Left unchecked, at the 10th step we’re at nearly 2 MILLION new people infected.

1
5
25
125
625
3125
15625
78125
390625
1953125

If we graph the first 6 steps, we can see how an R0 of 2 compares with an R0 of 5.

New infections for R0 of 2 versus R0 of 5. R0 of 5 is a red line jumping sharply upwards, to over 3000 by step 6. The blue line for R0 of 2 barely registers on the graph, it is relatively low and flat.

Or, to put it another way, check out these little coronaviruses. Each step is 5 times the step before.

5 steps of transmission of the delta virus, with an R0 of 5. Each little covid image represents one new person infected

The good news is that we can effectively modify the R0. The delta variant’s R0 is only 5 if people are interacting in a way that allows the virus to jump from person to person. This is why contact tracing can be so effective – if we can identify all of the people who have had contact with an infected person BEFORE they become infectious themselves, then we can prevent the virus from spreading any further. If we can drop the R0 to under 1, meaning that, on average, people infected with delta are infecting less than one other person, then we can get it under control.

Contact tracing works if we can identify every single person an infected person has been near enough to to transfer the virus. The trouble is that delta makes that jump so quickly and easily that contact tracing needs to identify everyone an infected person has walked past in the street, especially if they were unmasked. This is obviously not achievable. Plus, even the most dedicated of us sometimes forget to check in, so that is not 100% reliable either.

Wearing masks helps, but only if they are properly fitted, worn properly, and washed or replaced regularly.

This is why we need strict lockdowns. Because lockdowns reduce the number of people we each come into contact with, thus effectively reducing the R0, and limiting delta’s opportunities to spread.

If we don’t get the R0 down, we can’t control the spread of the virus. It’s as simple as that.

And if you’re wondering why I stopped my little covids at step 5 in the picture above, it’s because step 6 is too big to fit on the screen.

Step 6 is 3125 new cases – too many to display onscreen (this is not the full set)

Once again, our safety relies on our leaders (and the public) understanding exponential growth. It’s not actually complicated, but few of us have ever needed to know how it works. Now, more than ever, we need to build our data literacy, so that we can understand the danger we are in.

For more reasons why we need to be data literate, and how to teach our kids to change the world, check out Raising Heretics, pre-order now, or buy online in all the usual places from August 1st.

Vaccine hesitancy is a logical consequence of the way we teach science.

Vaccine hesitancy could literally kill, yet it’s a logical consequence of the way we teach science.

We tend to think Science is about facts and right answers. This is absolutely the way we teach it, but it’s the opposite of what Science really is. We learn the periodic table, the arrangement of subatomic particles around a nucleus, the equations for force and motion, and how to name the components of a cell. We teach with experiments where known inputs are treated with a known process, producing a known outcome. Kids who don’t get the “right” answer either fake their results or copy from their neighbours. This is not an education in Science, it’s an education in confirmation bias – in seeing what we expect to see.

Science is actually a way of exploring and understanding the world, and of solving problems. By its very nature science deals with uncertainty, and constantly proves itself wrong as new information becomes available.

Scientific theories are based on the information we have right now. Sometimes we can’t see, measure, or understand enough to explain a phenomenon fully, but we have a model we think is right, and it’s right enough to help us understand some parts of the way the world behaves.

We can see this in the way our understanding of covid19 has evolved. At first we thought it was transmitted by droplets, so that unless you were in the direct path of someone’s sneeze or cough, the main risk was touching an infected surface. As we learned more, our understanding developed. We now know that it is very easily transmitted by aerosols – in other words, virus particles can hang in the air in such quantities that we easily breathe them in and become sick.
This explains why transmission rarely happens outdoors, and why ventilation is key when we’re indoors. It also explains why hotel quarantine is so problematic – because even if there is no air transfer between rooms, an infected person walking through a corridor can leave that corridor so contaminated that it’s infectious for some time afterwards. It also explains why masks (when properly worn) are so effective at preventing transmission.

We’ve also seen our understanding of vaccines and their side effects evolve. And the fact that the story keeps changing – from “Astrazeneca is safe for everyone” to “it’s safe for everyone over 50” and now “it’s safe for everyone over 60” – makes people nervous. But it’s this rapidly changing information that should give us comfort and confidence. This is Science doing its job – adapting our understanding according to new information.

I once interviewed Cameron Neil, who at the time was head of the Fair Trade Association of Australia and New Zealand. We were talking about the fact that it’s hard to buy ethically, because the information we have keeps changing. Neil’s response is an ethical approach to consumption, but it also encapsulates an intelligent approach to Science: “With the information available to me today I make the best choice I can, knowing full well that I may get information tomorrow that means the choice I made was the wrong one, and I’ll have to do better next time.”

When it comes to vaccines, of course, we crave certainty. No-one wants to take something that might harm them. We want to know with absolute clarity what the best thing is that we can do for our health. The fear and uncertainty in the community around the Astrazeneca vaccine is palpable. Yet according to Hassan Vally, an epidemiologist at La Trobe University, the risk of dying from a blood clot due to the vaccine in Australia is 0.5 per million, while the risk of dying in a car accident in Australia in any given year is 28 per million. Compare that with the risk associated with taking aspirin or other non steroidal anti-inflammatories (NSAIDS), which is 24.8 deaths per million people, or a staggering 153 per million users of those drugs. This is where a different understanding of Science could help us.

If we truly understood how Science worked, the rapidly changing information would give us confidence that our understanding was getting better and better. If we taught Science as an exploration of the unknown, and a constantly developing set of theories, rather than a fixed set of hard facts, we would be far better prepared to understand the constantly evolving picture of covid19 and its vaccines.

It’s really hard to teach kids critical thinking skills when your toolkit is questions that all have right answers, curricula full of facts and straightforward procedures, and textbooks that leave kids floating on an uneasy sea of factoids, memorisation, and perfectly neat examples tied up with a bow.

Imagine if we taught Science by exploring the world. By trying to solve problems that have no textbook answers, where students have to rigorously test and evaluate their own work (and the work of others) in order to be confident of their results, because they can’t just look up the answer, and have the teacher mark it right or wrong.

If we grew up with this basis, knowing Science as an evolving, developing discipline, rather than a bunch of facts pinned to the unchanging pages of a textbook, we would know that our changing understanding of covid19 and its vaccines is not a threat. It’s what’s keeping us safe.

Read more about the way we teach science, and about teaching our kids to be critical thinkers, in Raising Heretics: Teaching Kids to Change the World.

Teaching STEM is more important than robots

This is an excerpt from Raising Heretics: Teaching Kids to Change the World, which is due out on August 1st.

I founded the Australian Data Science Education Institute in 2018 because I wanted to show kids that they are capable of working with technology, that it is relevant to them, and that they don’t have to look like Sheldon from the Big Bang Theory in order to learn to program.

It’s well known that the technology industry has a diversity problem when it comes to women, but lack of diversity goes way beyond gender. By trying to increase the number of women and girls in STEM, we are only tackling the easy part – though it’s actually not that easy, judging by the sheer volume of women in STEM programmes and the persistently stubborn failure of the numbers to actually shift.

The problem is that we consistently attract the kinds of people to tech that are already there. We are missing big chunks of the population – boys included. Boys who don’t see themselves as nerdy, or who don’t see the point of tech. Girls who don’t see it as relevant to them. Non binary and gender queer kids who don’t see themselves as represented or welcome in any of the tech programmes available to them.

If we had true diversity in technology and Data Science, we’d have a range of ethnic and cultural backgrounds, as well as people with a wide range of physical abilities. We’d have people on our design teams that are mobility compromised, vision impaired, with allergies, with varied gender identities and sexualities, with every possible skin tone and body shape. We’d have people who act differently, dress differently, think differently, and have different needs. I have headphones that don’t work well with long hair, for goodness’ sake! Guess who was on that design team?

This lack of diversity is bad for the technology industry, but it’s even worse for the rest of us, because technology is changing the shape of our world at an alarming rate, and we currently have very little say in our own future. Companies like Uber and Doordash are radically changing our working conditions and eliminating hard won entitlements and protections, while Facebook and Youtube spread misinformation and encourage radicalisation, all in the name of keeping people on their platforms and maximising their profits. Our world is being directly shaped by technology companies that are working in ways we don’t understand and have no control over.

Meanwhile we see human resources companies using AI to filter job applicants, claiming that their system eliminates “human bias”, without admitting the possibility that it introduces new forms of machine bias. We see “predictive policing” algorithms being used to predict crime and target particular communities in disturbing ways. We see a rush towards machine learning and artificial intelligence systems for their own sake, rather than for problems they can legitimately solve, and we have a wholly unwarranted confidence in the accuracy, reliability, and objectivity of their output.

It turns out that diversity in the technology industry is only a small part of the reason why teaching all kids Data Science and STEM skills matters. The big part is that we need a technology and data literate population who are trained to think critically and creatively, and, in particular, trained to believe that they can solve problems. That’s the world we need to build. And the foundation stone of world building has to be education.

We have a choice. We can train kids to be obedient process followers who don’t rock the boat, or we can train them to be challenging, critical and creative thinkers who ask difficult questions and come up with innovative solutions to our worst problems.

Above all, we need people who are prepared to be heretical.
Who ask “why?”
Who ask “how can we be sure?”
Who ask “what have we missed?”
Who ask “how can we do better?”
Who ask “who are we hurting?”
Who ask “how can we fix this for everyone?”
Who ask “how will we know how well it works?”

These questions are often heretical. By asking them, I’ve sometimes made my bosses very unhappy. They make people uncomfortable. But they are crucial to building an ethical, sustainable, positive future for all of us.

___

Pre-order Raising Heretics now:

https://events.humanitix.com/raising-heretics-pre-orders-and-book-launch