Vaccine hesitancy is a logical consequence of the way we teach science.

Vaccine hesitancy could literally kill, yet it’s a logical consequence of the way we teach science.

We tend to think Science is about facts and right answers. This is absolutely the way we teach it, but it’s the opposite of what Science really is. We learn the periodic table, the arrangement of subatomic particles around a nucleus, the equations for force and motion, and how to name the components of a cell. We teach with experiments where known inputs are treated with a known process, producing a known outcome. Kids who don’t get the “right” answer either fake their results or copy from their neighbours. This is not an education in Science, it’s an education in confirmation bias – in seeing what we expect to see.

Science is actually a way of exploring and understanding the world, and of solving problems. By its very nature science deals with uncertainty, and constantly proves itself wrong as new information becomes available.

Scientific theories are based on the information we have right now. Sometimes we can’t see, measure, or understand enough to explain a phenomenon fully, but we have a model we think is right, and it’s right enough to help us understand some parts of the way the world behaves.

We can see this in the way our understanding of covid19 has evolved. At first we thought it was transmitted by droplets, so that unless you were in the direct path of someone’s sneeze or cough, the main risk was touching an infected surface. As we learned more, our understanding developed. We now know that it is very easily transmitted by aerosols – in other words, virus particles can hang in the air in such quantities that we easily breathe them in and become sick.
This explains why transmission rarely happens outdoors, and why ventilation is key when we’re indoors. It also explains why hotel quarantine is so problematic – because even if there is no air transfer between rooms, an infected person walking through a corridor can leave that corridor so contaminated that it’s infectious for some time afterwards. It also explains why masks (when properly worn) are so effective at preventing transmission.

We’ve also seen our understanding of vaccines and their side effects evolve. And the fact that the story keeps changing – from “Astrazeneca is safe for everyone” to “it’s safe for everyone over 50” and now “it’s safe for everyone over 60” – makes people nervous. But it’s this rapidly changing information that should give us comfort and confidence. This is Science doing its job – adapting our understanding according to new information.

I once interviewed Cameron Neil, who at the time was head of the Fair Trade Association of Australia and New Zealand. We were talking about the fact that it’s hard to buy ethically, because the information we have keeps changing. Neil’s response is an ethical approach to consumption, but it also encapsulates an intelligent approach to Science: “With the information available to me today I make the best choice I can, knowing full well that I may get information tomorrow that means the choice I made was the wrong one, and I’ll have to do better next time.”

When it comes to vaccines, of course, we crave certainty. No-one wants to take something that might harm them. We want to know with absolute clarity what the best thing is that we can do for our health. The fear and uncertainty in the community around the Astrazeneca vaccine is palpable. Yet according to Hassan Vally, an epidemiologist at La Trobe University, the risk of dying from a blood clot due to the vaccine in Australia is 0.5 per million, while the risk of dying in a car accident in Australia in any given year is 28 per million. Compare that with the risk associated with taking aspirin or other non steroidal anti-inflammatories (NSAIDS), which is 24.8 deaths per million people, or a staggering 153 per million users of those drugs. This is where a different understanding of Science could help us.

If we truly understood how Science worked, the rapidly changing information would give us confidence that our understanding was getting better and better. If we taught Science as an exploration of the unknown, and a constantly developing set of theories, rather than a fixed set of hard facts, we would be far better prepared to understand the constantly evolving picture of covid19 and its vaccines.

It’s really hard to teach kids critical thinking skills when your toolkit is questions that all have right answers, curricula full of facts and straightforward procedures, and textbooks that leave kids floating on an uneasy sea of factoids, memorisation, and perfectly neat examples tied up with a bow.

Imagine if we taught Science by exploring the world. By trying to solve problems that have no textbook answers, where students have to rigorously test and evaluate their own work (and the work of others) in order to be confident of their results, because they can’t just look up the answer, and have the teacher mark it right or wrong.

If we grew up with this basis, knowing Science as an evolving, developing discipline, rather than a bunch of facts pinned to the unchanging pages of a textbook, we would know that our changing understanding of covid19 and its vaccines is not a threat. It’s what’s keeping us safe.

Read more about the way we teach science, and about teaching our kids to be critical thinkers, in Raising Heretics: Teaching Kids to Change the World.